Bus Terminal Study for BEST

“A Methodology to Incorporate Infrastructure into Public Transport Planning in Constrained Urban Areas”

Under Supervision of
Priyanka Vasudevan
Senior Associate - Urban Transport
EMBARQ India

Presented by
Naresh Kuruba
Research Intern – Urban Transport
EMBARQ India
Structure of presentation

- Background
- Study area delineation
- Data collection
- Analysis and findings
- Plan and design of terminal
- Impact on operations and passengers
- Conclusions and recommendations
The success of public transport is largely depend on it’s **supportive infrastructure** such as terminals, depots, etc.

To understand the effects of infrastructure on bus operations and services, this study focus on **terminal infrastructure**

Terminal is a place where routes begin or end or both

There are logically located at point where many routes converge and/or diverge
Objectives

- To identify the **existing bus route network** in the study area
- To determine the **infrastructure gaps** in the network using planning tool such as GIS
- To estimates the **impact of a proposed terminal** on bus operations.
Methodology

Selection of planning area → Data collection

Identifying bus route network in the study area

Assessment of existing bus route network using GIS

B&A Surveys → Plot existing bus terminals

Analysis of existing situation

Identify terminal gaps in the study area

Options to incorporate terminal infrastructure → Plan and design of the terminals

Impact on operations suggested over the terminal

Objective: 1

Objective: 2

Objective: 3
Case Study: Island City, Mumbai

Area—67.7 sq. km Population—31,45,966 (2011)
Pop. Density—46,470/sq.km
PT Share: 78% Bus Share: 26%
Data Collection

- **Primary data collection**
 - Boarding & Alighting Survey Along Routes
 - Site visits

- **Secondary data collection**
 - BEST Bus Atlas as on Nov 2013
 - Details of Bus Terminals as on April 2013
BEST Bus Infrastructure in Mumbai’s Island City

- **Depots**: 7
- **On-street terminals**: 41
- **Off-street terminals**: 11
- **Fleet operated**: 960
- **Types of buses**
 - Single deck
 - Double deck
 - Midi
 - Mini and
 - Air condition
BEST Bus Operations in Mumbai’s Island City

- Total no. of routes: 135
- These routes are operates with various types of services

<table>
<thead>
<tr>
<th>Type of service</th>
<th>No. of routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary</td>
<td>102</td>
</tr>
<tr>
<td>Limited</td>
<td>25</td>
</tr>
<tr>
<td>Express/ corridor</td>
<td>5</td>
</tr>
<tr>
<td>Air-conditioned</td>
<td>3</td>
</tr>
</tbody>
</table>

- Avg. passengers per day: **8.5 lakh**
Identifying bus route network

Conceptual diagram

Buses generally have sufficient turning radii only on arterial and sub-arterial roads

Relationship between “road hierarchy and bus route”

Arterial road
Sub-arterial road
Collector road
Local road
Bus stop
Bus route

EMBARQ India
Depot wise operational routes

- Backbay: 18 routes
- Colaba: 15 routes
- Central: 20 routes
- Wadala: 21 routes
- Worli: 16 routes
- Dharavi: 23 routes
- Pratiksha Nagar: 22 routes
Summary of depot wise operational routes

<table>
<thead>
<tr>
<th>Name</th>
<th>Backbay</th>
<th>Colaba</th>
<th>Central</th>
<th>Wadala</th>
<th>Worli</th>
<th>Pratiksha Nagar</th>
<th>Dharavi</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of routes</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>16</td>
<td>23</td>
<td>22</td>
<td>135</td>
</tr>
<tr>
<td>With-in city</td>
<td>16 (94%)</td>
<td>8 (67%)</td>
<td>16 (80%)</td>
<td>10 (50%)</td>
<td>13 (81%)</td>
<td>10 (50%)</td>
<td>8 (38%)</td>
<td>89 (64%)</td>
</tr>
<tr>
<td>Connected</td>
<td>1 (6%)</td>
<td>4 (33%)</td>
<td>4 (20%)</td>
<td>10 (50%)</td>
<td>3 (19%)</td>
<td>10 (50%)</td>
<td>7 (33%)</td>
<td>31 (31%)</td>
</tr>
<tr>
<td>Out-side city</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6 (29%)</td>
</tr>
<tr>
<td>Avg. no. of buses</td>
<td>126</td>
<td>80</td>
<td>130</td>
<td>152</td>
<td>114</td>
<td>202</td>
<td>156</td>
<td>960</td>
</tr>
<tr>
<td>Avg. vehicle utilization</td>
<td>151</td>
<td>146</td>
<td>159</td>
<td>176</td>
<td>155</td>
<td>202</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Avg. pax. per day in lacks</td>
<td>1.14</td>
<td>0.72</td>
<td>1.22</td>
<td>1.05</td>
<td>1.09</td>
<td>1.67</td>
<td>1.42</td>
<td>8.5</td>
</tr>
</tbody>
</table>
Analysis Outputs

<table>
<thead>
<tr>
<th>#</th>
<th>Analysis</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Route coverage</td>
<td>% area covered by public transport</td>
</tr>
<tr>
<td>2</td>
<td>Service frequencies</td>
<td>% of area covered by high frequency bus services</td>
</tr>
<tr>
<td>3</td>
<td>Terminal influence</td>
<td>Terminals gaps</td>
</tr>
<tr>
<td>4</td>
<td>Transit demand</td>
<td>Major activity nodes</td>
</tr>
</tbody>
</table>
Route coverage area

<table>
<thead>
<tr>
<th>No.</th>
<th>Buffer in mts</th>
<th>% of coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100m</td>
<td>47.8%</td>
</tr>
<tr>
<td>2</td>
<td>200m</td>
<td>72.4%</td>
</tr>
<tr>
<td>3</td>
<td>300m</td>
<td>84.0%</td>
</tr>
<tr>
<td>4</td>
<td>400m</td>
<td>89.7%</td>
</tr>
<tr>
<td>5</td>
<td>500m</td>
<td>93.2%</td>
</tr>
</tbody>
</table>

- 500m is considered as desirable distance for walk
- **93%** of the Island area is within walkable distance
Service Frequencies

<table>
<thead>
<tr>
<th>Frequency in min.</th>
<th>% routes</th>
<th>% coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 min</td>
<td>25.6%</td>
<td>74.9%</td>
</tr>
<tr>
<td>10-15 min</td>
<td>32.0%</td>
<td>88.7%</td>
</tr>
<tr>
<td>>15 min</td>
<td>42.4%</td>
<td>93.1%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

➢ **75%** of the area is covered with high frequency bus service
Various influence zones are created to the existing terminals.

The area marked shows that lack of terminals in the study area.

Dadar- Parel belt is identified as a serious need of terminal infrastructure.
Potential terminals points

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>No. of routes</th>
<th>No. of buses/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dadar Plaza</td>
<td>25</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>Lower Parel</td>
<td>13</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Prabhadevi</td>
<td>18</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Parel (W)</td>
<td>24</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Senapati Bapat Marg</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Nehru Planetarium</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Mahalakshmi Temple</td>
<td>16</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Metro BIG Cinemas</td>
<td>13</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>Dockyard Marg</td>
<td>11</td>
<td>38</td>
</tr>
</tbody>
</table>

These terminal points are identified based on terminal influence gaps in the study area and where routes merge/diverge.
These terminals are identified based on “Details of Bus Terminals as on April 2013”.

Today, two points have on-street terminals out of nine points. Namely, Dockyard Marg and Nehru Planetarium.
Boarding and alighting survey (BAS)

Route No: **63**

Chuna Bhatti To Vasantrao Naik Chowk

- **Route span:** 15.5 kms
- **No. of stations:** 34
- **Running time:** 90 min
- **Journey speed:** 11.3 km/hr

Total no. of Boarding’s/Alighting’s: **236**
- It is a new commercial and business centre
- This area already riddled with high densities and limited space
- This is a challenge in innovating ways to provide terminal infrastructure
- The location was identified under Senapati Bapat Marg Flyover at Elphinstone
Plan & design a terminal place
Impact on Operations

VKT per day: 1395

- Round trip length: 31 km
- Rounds trips per day: 5

VKT per day: 425

- Round trip length: 17 km
- Rounds trips per day: 5

VKT per day: 280

- Round trip length: 14 km
- Rounds trips per day: 5

Splitting the route would save **690 vehicle kilometers per day**, while maintaining the same **headway**, number of trips and **fleet size**.
Impact on Passengers

VKT per day: 1395

Round trip length- 31 km
Rounds trips per day- 5

Headway- 13 min

VKT per day: 765

Round trip length- 17 km
Round trips per day- 9

Headway- 7 min

VKT per day: 616

Round trip length- 14 km
Round trips per day-11

Headway- 6 min

Bus
Terminal
Interchange
A Chunna Bhatti
B Vasantraonaik Chok
C Lower Parel
D Elphinstone

It is also observed that improving headway from **13 min** to **7 min** (Route A-C) and **6 min** (Route C-B), while maintaining the same fleet size and VKT.
Conclusions & Recommendations

- For the operator, the implementing terminals results savings in vehicle kilometers travelled (VKT) for existing services.
- For a passenger, an additional terminal can improve service reliability and frequency through the introduction of shorter routes.
- The study is recommended to improve the quality of transfer/interchange facilities.
- There is a need to plan, design and identify the impact of proposed terminals to maximize the operational efficiency.
Thank You!