Flow Characteristics of Heterogeneous Traffic with and without Adherence to Lane Following

G. Sarishka, A. Gowri and R. Sivanandhan

Centre of Excellence in Urban Transport
Transportation Engineering Division
Department of Civil Engineering
IIT Madras, Chennai

Urban Mobility India Research Symposium
Dec 5, 2012
Introduction

- Homogeneous traffic
 - Lane-following
 - Disciplined movement

- Heterogeneous traffic
 - Highly varying static and dynamic characteristics
 - Difficult to impose lane discipline
 - Vehicles occupy any lateral position on the available road space

- Growth of vehicular traffic has resulted in low speeds, excess travel times, delays and safety-related traffic problems
Motivation

- Different types of vehicles moving on the same road may enjoy different levels of service (e.g. Two wheelers)
- Complex traffic scenario poses a serious challenge to traffic planners and engineers
- Solutions can be obtained through systematic study of relevant characteristics of mixed traffic
Objectives

- To compare the lane following and non-lane following characteristics of heterogeneous traffic for different lane facility types (two-, three- and four-lane)

- To compare the capacities and speeds of different lane facility types by varying composition, flow levels and lane widths
Literature Review

- Different simulation models were developed for heterogeneous traffic conditions (Oketch (2000), Cho & Wu (2004), Arasan & Koshy (2005), Mallikarjuna & Rao (2007), Dey et al. (2008))

- Limited work were done for comparing capacities of different lane facility types - heterogeneous traffic system follow lane discipline (Chandra & Kumar (2003), Arasan et al. (2009), Thomas et al. (2011), Gowri et al. (2012))

- This work is a further attempt in this direction; it compares the capacities of lane following and non-lane following scenarios through simulation models
Development of Simulation Model

- On most Indian roads, vehicles move freely based on availability of space and ignore lane discipline
- Smaller vehicles often weave through gaps between larger vehicles
- These features of traffic flow and wide variations in vehicular characteristics are incorporated in the developed simulation model (Gowri et al., 2009; Gowri, 2011).
- This model is intended to simulate the heterogeneous traffic flow at mid-block section (two lanes) of an urban street.
Logics used in Simulation Model

- Logics in simulation model for non-lane following scenario
 - Vehicle Generation
 - Vehicle Placement
 - Vehicle Movement

- Object Oriented Programming concepts

- Implemented in C++ programming language (Gowri et al., 2009)
Vehicle Generation

• Vehicle enter the system based on time interval (time gap distribution)

• Time gap distributions for different categories based on lead-lag vehicle (e.g. TW-TW, TW-Car, etc.) are given as input to the simulation model

• Generated vehicle is assigned a free speed as per the normal distribution based on field data

• Type of vehicle is assigned based on traffic composition observed in field
Vehicle Placement

- Vehicle placement is based on availability of transverse and longitudinal spaces.
- Vehicle looks for spaces from right edge to left edge of the road stretch.
- If spaces are sufficient, vehicle will be placed on the road stretch.
- If not, it reduces its speed to that of its leader (car following rule).
Vehicle Movement

- If there is no slow vehicle in front of it, vehicle accelerates up to its free speed.
- If not, overtaking logic is invoked
- Overtaking vehicle looks for availability of transverse and longitudinal spaces on the right/left side of the overtaken vehicle
- If spacings are inadequate on both the sides, car following logic is involved
Modifications to the Simulation Program

- In order to simulate lane following by vehicles and to accommodate multiple lane scenarios, program was modified appropriately

- Lane following scenario
 - Vehicles are placed in such a way that centre line of the vehicle and centre line of the lane match.
 - Overtaking is allowed but movements between lanes are not allowed.
 - Vehicles are allowed to overtake from the left as well as right

- Increase in lane widths to reflect multiple lanes (three and four) were incorporated
Data Collection

Ashok Nagar Mid-block Section, Chennai

- Road width – 8.2 m
- Total volume – 4000 veh/h
- Two Wheeler composition is dominant (70%)
Model Validation

- Parameter used for validation – Speeds of different types of vehicles

- Speeds of vehicles for one hour peak period is obtained from field and simulation model

- Simulated values are not statistically different from observed values, indicating the validity of the developed model
Model Application

• Study of influence of lane discipline on speed-flow relationships by varying
 ▪ Compositions
 ▪ Flow levels [500 veh/h to capacity (simulation model)]
 ▪ Number of lanes (two, three and four lanes)

• Different compositions used:
 ▪ Composition 1 - 70% TW and 19% cars
 ▪ Composition 2 - 19% TW and 70% cars
 ▪ Composition 3 - 45% TW and 44% cars
Composition 1 (TW Dominant)

- Capacities (in veh/h) are higher in the traffic stream for both lane following and non-lane following cases.

- Due to high seepage (between other vehicles) of two wheelers due to their smaller size and higher manoeuverability.
Composition 2 (Car Dominant)

- Capacities (veh/h) are lesser in the traffic stream compared to that of two wheeler dominant composition.
- Due to the presence of higher proportion of cars vis-a-vis two wheelers.
Composition 3 (TW and Car almost equal)

- Capacities (in veh/h) are generally higher than car dominant composition (Composition 2) and lesser than two wheeler dominant composition (Composition 1)
Capacity difference between Lane Following (LF) and Non-Lane Following (NLF) for various lane widths and compositions

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>Composition 1 (70% TW, 19% Cars)</th>
<th>Composition 2 (19% TW, 70% Cars)</th>
<th>Composition 3 (44% TW, 45% Cars)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacity PCU/h (veh/h)</td>
<td>Capacity PCU/h (veh/h)</td>
<td>Capacity PCU/h (veh/h)</td>
</tr>
<tr>
<td></td>
<td>NLF</td>
<td>LF</td>
<td>Diff.</td>
</tr>
<tr>
<td>Two-lane road</td>
<td>6343 (7356)</td>
<td>5067 (5876)</td>
<td>1276 (1480)</td>
</tr>
<tr>
<td>Three-lane road</td>
<td>8839 (10250)</td>
<td>5962 (6914)</td>
<td>2877 (3336)</td>
</tr>
<tr>
<td>Four-lane road</td>
<td>11101 (12873)</td>
<td>9082 (10532)</td>
<td>2019 (2341)</td>
</tr>
</tbody>
</table>
Comparison of stream speeds (at capacities) of Lane Following and Non-Lane Following cases for various lane widths and compositions

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>Composition 1 (70% TW, 19% Cars)</th>
<th>Composition 2 (19% TW, 70% Cars)</th>
<th>Composition 3 (44% TW, 45% Cars)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed km/h</td>
<td>Speed km/h</td>
<td>Speed km/h</td>
</tr>
<tr>
<td></td>
<td>NLF LF Diff.</td>
<td>NLF LF Diff.</td>
<td>NLF LF Diff.</td>
</tr>
<tr>
<td>Two- lane road</td>
<td>31 24 7</td>
<td>31.4 24.5 6.9</td>
<td>31 24 7</td>
</tr>
<tr>
<td>Three- lane road</td>
<td>32 25 7</td>
<td>32 23.6 8.4</td>
<td>32 24 8</td>
</tr>
<tr>
<td>Four- lane road</td>
<td>29 24 5</td>
<td>32 24.8 7.2</td>
<td>29 24 5</td>
</tr>
</tbody>
</table>
Conclusions

- This study focuses on comparison of capacities and corresponding speeds under heterogeneous traffic with and without lane adherence for various combinations of vehicular compositions.

- An existing microscopic traffic simulation model was used.

- Simulation runs were carried out for various combinations of vehicular composition, volume levels, number of lanes and lane following/non-lane following scenarios.
Conclusions (contd..)

- Non-adherence to lanes results in higher mid-block capacities vis-à-vis the case of lane following

- Capacity decreases with the increase in the cars in the total composition when it is measured in veh/h but increases with increase in cars when it is measured in PCU/h, for both lane following and non-lane following cases, in all the road cases, i.e. two, three and four lanes

- While these findings point to higher capacities for non-lane following cases, the issue of compromise on safety must be kept in mind
Conclusions (contd..)

- More case studies and further scenario analysis need to be conducted to generalize the findings

- The present work can be extended to include both mid-block and intersection to form a linear section, which would serve as measure of performance of traffic flow on a road corridor
Acknowledgement

- The data collection effort in this project was made possible through a project supported by funds from Ministry of Urban Development (MoUD), GoI, through their sponsorship of Centre of Excellence in Urban Transport at IIT Madras
References

